[人人能懂] 为AI装上仪表盘、罗塞塔石碑与阅读眼镜
Description
当AI变得越来越强大,我们还能从哪些地方挖掘它的潜力呢?本期我们聚焦几篇思路极其巧妙的最新论文,它们不约而同地告诉我们:真正的飞跃,不一定来自更大的模型,而来自更聪明的工作方式。我们将一起探讨,AI如何学会为自己省下90%的训练开销,如何免费装上“直觉”来审时度势,又是如何通过“抓重点”实现一目十行。更重要的是,我们将看到科学家们如何努力为整个AI行业的发展,打造一把统一的“度量衡”。
00:00:38 AI调参省钱术:从“大力出奇迹”到“聪明省力气”
00:07:44 AI绘画,如何从“慢跑”变“冲刺”?
00:13:11 给AI发展装上一个统一的度量衡
00:19:25 如何免费给AI装上“直觉”?
00:24:56 AI“一目十行”的秘密:不靠算力,靠“会抓重点”
本期介绍的几篇论文:
[LG] Efficient Hyperparameter Search for Non-Stationary Model Training
[Google DeepMind & Google Research]
https://arxiv.org/abs/2512.01258
---
[CV] Improved Mean Flows: On the Challenges of Fastforward Generative Models
[CMU & THU & Adobe]
https://arxiv.org/abs/2512.02012
---
[AI] A Rosetta Stone for AI Benchmarks
[Google DeepMind]
https://arxiv.org/abs/2512.00193
---
[LG] ZIP-RC: Zero-overhead Inference-time Prediction of Reward and Cost for Adaptive and Interpretable Generation
[UC Berkeley & MIT]
https://arxiv.org/abs/2512.01457
---
[LG] Accelerating Large-Scale Reasoning Model Inference with Sparse Self-Speculative Decoding
[UC Berkeley & MIT & University of Washington]
https://arxiv.org/abs/2512.01278



